INFLUENCE OF TURBULENT Pr NUMBER ON FRICTION AND HEAT TRANSFER AT A PLATE IMMERSED IN A TURBULENT GAS STREAM

I. P. Ginzburg and I. V. Korneva

Inzhenerno-Fizicheskii Zhurnal, Vol. 9, No. 2, pp. 155-162, 1965

A solution is offered to the problem of determining the friction and heat transfer coefficients for a plate immersed in a turbulent gas stream, using the approximate dependence of heat content on velocity given in reference [1]. The influence of Pr_T on friction and heat transfer is evaluated.

The following relation, between heat content and velocity was established in reference [1] for the case of zerogradient flow with arbitrary Pr_L and Pr_T :

$$\bar{h} = \bar{h}_{\bar{w}} + \begin{pmatrix} \partial \bar{h} \\ \partial \varphi \end{pmatrix}_{\bar{w}} S(\varphi) - \bar{u}^2 R(\varphi),$$
⁽¹⁾

where

$$S(\varphi) = \int_{0}^{\varphi} \exp\left\{-\int_{0}^{\frac{z}{2}} \frac{\Pr}{\omega} \frac{\partial \omega (1/\Pr - 1)}{\partial \varphi} d\varphi\right\} d\varphi,$$

$$R(\varphi) = 2 \int_{0}^{\frac{z}{2}} \exp\left(-\int_{0}^{\frac{z}{2}} \frac{\Pr}{\omega} \frac{\partial \omega (1/\Pr - 1)}{\partial \varphi} d\varphi\right) \left\{\int_{0}^{\frac{z}{2}} \Pr\left[\exp\int_{0}^{\frac{z}{2}} \frac{\Pr}{\omega} \times \frac{\partial \omega (1/\Pr - 1)}{\partial \varphi} d\varphi\right] d\varphi\right\} d\varphi_{1},$$

$$\omega = \tau/\tau_{\omega}, \quad \varphi = v_{x}/u, \quad \overline{h} = h/H_{0}, \quad \overline{u^{2}} = u^{2}/2H_{0}.$$

The present paper makes use of this relation and the principles of the semi-empirical theory of turbulence to evaluate the influence of the Pr_{T} number on friction and heat transfer at a plate.

Approximate Form of $R(\varphi)$ and $S(\varphi)$ for a Two-Layer System

We shall conventionally divide the complete boundary layer into two zones: a laminar sublayer and a turbulent layer. The dimensionless velocity in these layers will vary, respectively, from 0 to φ_L in the laminar sublayer and from φ_L to *l* in the turbulent layer. The Pr number will take a value equal to \Pr_L in the laminar sublayer and a value equal to \Pr_T in the turbulent layer. We then have

$$S(\varphi) = S(\varphi_{\rm L}) + \frac{1}{\Pr_{\rm L}} \int_{\varphi_{\rm L}}^{\varphi} \Pr_{\rm r} \left(\exp - \int_{0}^{\varphi} \frac{1 - \Pr_{\rm r}}{\omega} \frac{\partial \omega}{\partial \varphi} d\varphi \right) d\varphi_{\rm I};$$

$$R(\varphi) = R(\varphi_{\rm L}) + 2 \int_{\varphi_{\rm L}}^{\varphi} \Pr_{\rm r} \left(\exp - \int_{0}^{\varphi_{\rm L}} \frac{1 - \Pr_{\rm r}}{\omega} \frac{\partial \omega}{\partial \varphi} d\varphi \right) \times \\ \times \left[\int_{0}^{\varphi} \left(\exp \int_{0}^{\varphi} \frac{1 - \Pr_{\rm r}}{\omega} \frac{\partial \omega}{\partial \varphi} d\varphi \right) d\varphi \right] d\varphi_{\rm I}.$$

We represent $\omega(\varphi)$ approximately in the form of a third-degree polynomial:

$$\omega = 1 - \varphi^3.$$

Assuming that \Pr_{T} and \Pr_{L} are constants, we calculate $S(\varphi_{L})$ and $R(\varphi_{L})$. Making a numerical approximation to the re-

sults obtained, we have

$$S(\boldsymbol{\varphi}_{\mathrm{L}}) = \boldsymbol{\varphi}_{\mathrm{L}}, \quad R(\boldsymbol{\varphi}_{\mathrm{L}}) \approx \Pr_{\mathrm{L}} \boldsymbol{\varphi}_{\mathrm{L}}^{2}$$

The integrals $S(\varphi)$ and $R(\varphi)$, with account for the form of $S(\varphi_L)$ and $R(\varphi_L)$, become

$$S(\varphi) = \varphi_{L} \left[1 - \frac{Pr_{\tau}}{Pr_{L}} \omega_{L}^{Pr} L^{-Pr_{\tau}} \right] + \frac{Pr_{\tau}}{Pr_{L}} \omega_{L}^{Pr} L^{-Pr_{\tau}} I_{1},$$

$$R(\varphi) = \varphi_{L}^{2} (Pr_{L} - Pr_{\tau}) + 2Pr_{\tau} I_{2},$$
(2)

where

$$I_1 = \int_0^{\varphi} \omega^{\Pr_{\mathrm{T}}-1} d\varphi, \quad I_2 = \int_0^{\varphi} \omega^{\Pr_{\mathrm{T}}-1} \left(\int_0^{\varphi} \omega^{1-\Pr_{\mathrm{T}}} d\varphi\right) d\varphi.$$

Calculation of I_1 and I_2 for Pr_T varying from 0.5 to 2 shows that I_1 and I_2 may be put in the approximate form

$$I_1 = a_1 \varphi, \quad I_2 = a_2 \varphi^2,$$
 (3)

where

$$a_1 = 1.214 - 0.214 \operatorname{Pr}_{\tau}, \ a_2 = 0.65 - 0.15 \operatorname{Pr}_{\tau}.$$

As regards $I_1(1)$ and $I_2(1)$, $I_1(1)$ may be accurately expressed in terms of gamma functions, and $I_2(1)$ approximately, as follows:

$$I_{1}(1) = \frac{1}{3} \frac{\Gamma(1/_{3}) \Gamma(Pr_{\tau})}{\Gamma(Pr_{\tau} - 1/_{3})},$$

$$I_{2}(1) \simeq \frac{1}{3} \frac{\Gamma\left(\frac{2}{3}\right)\Gamma\left(\operatorname{Pr}_{T}\right)}{\Gamma\left(\operatorname{Pr}_{T} + \frac{2}{3}\right)} - \frac{1 - \operatorname{Pr}_{T}}{12} \frac{\Gamma\left(\frac{5}{3}\right)\Gamma\left(\operatorname{Pr}_{T}\right)}{\Gamma\left(\frac{5}{3} + \operatorname{Pr}_{T}\right)}$$

Determining $(\partial h/\partial \varphi)_{W}$ from the boundary conditions $h = h_0$ when $\varphi = 0$, we obtain

$$\left(\frac{\partial \bar{h}}{\partial \varphi}\right)_{\omega} = \frac{\bar{h}_0 + \bar{u}^2 R(1) - \bar{h}_{\omega}}{S(1)},$$

$$S(1) = \alpha \varphi_{\mathrm{I}} + \beta I_1(1),$$
(4)

where

$$S(1) = \alpha \varphi_{L} + \beta I_{1}(1),$$

$$R(1) = \gamma \varphi_{L}^{2} + 2 \operatorname{Pr}_{\tau} I_{2}(1),$$

$$\alpha = 1 - \frac{\operatorname{Pr}_{\tau}}{\operatorname{Pr}_{L}} \omega_{L}^{\operatorname{Pr}_{L} - \operatorname{Pr}_{\tau}}; \quad \beta = \frac{\operatorname{Pr}_{\tau}}{\operatorname{Pr}_{L}} \omega_{L}^{\operatorname{Pr}_{L} - \operatorname{Pr}_{\tau}},$$

$$\gamma = \operatorname{Pr}_{L} - \operatorname{Pr}_{\tau}.$$

Substituting (2) into (1) and taking (3) into account, we can approximate to the dependence of h on φ in the turbulent layer by means of a second-degree polynomial in φ :

 $\overline{h} = A \varphi^2 + B \varphi + C, \qquad (5)$

where

$$A = -2 \operatorname{Pr}_{\tau} a_{2} u^{2},$$

$$B = (1 - \overline{h}_{w} + [R(1) - 1] \overline{u}^{2}) \beta a_{1} / S(1),$$

$$C = \overline{h}_{w} - (1 - \overline{h}_{w} + [R(1) - 1] \overline{u}^{2}) \alpha \varphi_{L} / S(1) - \overline{u}^{2} \gamma \varphi_{L}.$$

In the laminar sublayer

$$S(\varphi) \approx \varphi, \quad R(\varphi) = \Pr_{L} \varphi^{2},$$

$$\bar{h} = \bar{h}_{w} + \left(\frac{\partial \bar{h}}{\partial \varphi}\right)_{w} \varphi - \bar{u}^{2} \quad \Pr_{L} \varphi^{2} = \bar{h}_{w} + B' \varphi + A' \varphi^{2}.$$
 (6)

Derivation of the Velocity Profile

We shall determine the velocity distribution law over the boundary layer.

In accordance with the basic assumptions of the semi-empirical theory of turbulence, the friction stress is given by:

$$\begin{split} y &\geq \delta_{\mathrm{L}}, \quad \tau = \rho \, k^2 \, y^2 \, u^2 \, (\partial \, \varphi / \partial y)^2, \\ y &\leqslant \delta_{\mathrm{L}}, \quad \tau = \mu \, u \partial \varphi / \partial y. \end{split}$$

In accordance with the preceding paragraph, we make the assumption

$$\tau/\tau_{w} = 1 - \varphi^{3}.$$

We shall further suppose that

$$\rho/\rho_w = h_w/h = \bar{h}_w/\bar{h}.$$

Using the expressions derived, after substituting h from (5), for determining the dependence $\varphi(y)$ we obtain

$$y \leq \delta_{\rm L}, \quad \mu \, u \, \frac{\partial \varphi}{\partial y} = \tau_w (1 - \varphi^3);$$
(7)

$$y \ge \delta_{\rm L}, \quad \frac{\tau_w}{\rho_w u^2} \; \frac{1}{k^2 y^2} = \frac{\bar{h}_w (\partial \varphi / \partial y)^2}{(1 - \varphi^3) (A \varphi^2 + B \varphi + C)}.$$
 (8)

Integrating (8) approximately, and taking into account that A < 0, on condition that $\varphi = 1$ when $y = \delta$, we obtain

$$\ln \frac{y}{\delta} = \sqrt{\bar{h}_w} k \zeta \frac{1,107}{V - A} \left(\arcsin \frac{-2A \varphi - B}{\sqrt{B^2 - 4AC}} - \arcsin \frac{-2A - B}{\sqrt{B^2 - 4AC}} \right).$$
(9)

In the laminar sublayer, assuming that $\mu = \mu_{\omega} (h/h_{\omega})^n$, after substituting the value of h from (6) into (7), for determining $\varphi(\mathbf{y})$ we obtain the equation

$$\left(1 + \frac{B'}{\bar{h}_{w}} \varphi + \frac{A'}{\bar{h}_{w}} \varphi^{2}\right) \frac{\partial \varphi}{\partial y} \approx \frac{\tau_{w}}{\mu_{w} u}, \qquad (10)$$

whose solution may be written approximately as:

$$\varphi\left(1 + \frac{nB'}{\overline{h}_{w}} \varphi + \frac{nA'}{\overline{h}_{w}} \varphi^{2}\right) = \frac{\tau_{w}}{\mu_{w} u} y$$

This formula is valid for $0 \le y \le \delta_{L}$.

Determination of the Thickness of the Laminar Sublayer and the Flow Velocity at its Edge

The velocity derivative has a discontinuity at the edge of the laminar sublayer

$$\left(\frac{\partial v_x}{\partial y}\right)_{y=\delta_{\rm L}^{-0}} = k_1 \left(\frac{\partial v_x}{\partial y}\right)_{y=\delta_{\rm L}^{+0}}.$$
(11)

From the relations of the semi-empirical theory, $\mu \frac{\partial v_x}{\partial y} = \tau$ when $y \leq \delta_L$, $\tau = \rho l^2 \left(\frac{\partial v_x}{\partial y}\right)^2$, and when $y \geq \delta_L$, as-

suming l = ky, we find

$$\left(\frac{\partial v_x}{\partial y}\right)_{y=\delta_{\mathrm{L}}=0} = \frac{\tau_{\mathrm{L}}}{\mu_{\mathrm{L}}}; \ \left(\frac{\partial v_x}{\partial y}\right)_{y=\delta_{\mathrm{L}}=0} = \frac{1}{k \delta_{\mathrm{L}}} \sqrt{\frac{\tau_{\mathrm{L}}}{\rho_{\mathrm{L}}}}.$$

Substituting into (11), we obtain

$$\delta_{\rm L} = \frac{k_1}{k} \frac{\mu_{\rm L}}{\sqrt{\rho_{\rm L} \tau_{\rm L}}}.$$
(12)

Since δ_L/δ is small, we may put $\tau_L \approx \tau_W$. Taking into account that $\rho/\rho_W = h_W/h$, $\mu = \mu_W (h/h_W)^n$ we obtain

$$\frac{\mu_{\rm L}}{V\overline{\rho_{\rm L}}} = \frac{\mu_{\rm w}}{V\overline{\rho_{\rm w}}} \left[1 + \left(n + \frac{1}{2}\right) \frac{B'}{\overline{h}_{\rm w}} \, \varphi_{\rm L} + \left(n + \frac{1}{2}\right) \frac{A'}{\overline{h}_{\rm w}} \, \varphi_{\rm L}^2 \right].$$

107

Substituting $\mu_L/\sqrt{\rho_L}$ into (12), we obtain

$$\delta_{\rm L} = \frac{k_1}{k} \frac{\mu_{\omega}}{\rho_{\omega} \sqrt{\tau_{\omega}}/\rho_{\omega}} \left[1 + \left(n + \frac{1}{2}\right) \frac{B'}{\bar{h}_{\omega}} \varphi_{\rm L} + \left(n + \frac{1}{2}\right) \frac{A'}{\bar{h}_{\omega}} \varphi_{\rm L}^2 \right]. \tag{13}$$

To determine φ_L , we put $y = \delta_L$, $\varphi = \varphi_L$ in (10), and obtain

$$\varphi_{\rm L} \left(1 + \frac{n}{2} \frac{B'}{\bar{h}_{w}} \varphi_{\rm L} + \frac{n}{3} \frac{A'}{\bar{h}_{w}} \varphi_{\rm L}^{2} \right) =$$

$$= \frac{k_{\rm I}}{k} \sqrt{\frac{\tau_{w}}{\rho_{w}}} \frac{1}{u} \left[1 + \left(n + \frac{1}{2} \right) \frac{B}{\bar{h}_{w}} \varphi_{\rm L} + \left(n + \frac{1}{2} \right) \frac{A'}{\bar{h}_{w}} \varphi_{\rm L}^{2} \right]. \tag{14}$$

This equation may be solved by the method of successive approximations. We take as the first approximation

$$\varphi_{\mathrm{L}} = \frac{k_{1}}{k} \frac{v_{\mathrm{e}}}{u} = \frac{k_{1}}{k\zeta}, \quad \delta_{\mathrm{L}} = \frac{k_{1}}{k} \frac{v_{\mathrm{e}}\zeta}{u}$$

where

$$\zeta = \frac{u}{\sqrt{\tau_w/\rho_w}} = \frac{u}{v_*}$$

Deviation of the Relation Between ζ and δ

Putting $y = \delta_L$, $\varphi = \varphi_L$ in (9), we obtain the following equation relating ζ and δ :

$$\ln \frac{\delta_{\rm L}}{\delta} = \frac{1.107}{V - A} k \zeta V_{h_{\omega}}^{-} \left(\arcsin \frac{-2A \varphi_{\rm L} - B}{V B^2 - 4AC} - \arcsin \frac{-2A - B}{\sqrt{B^2 - 4AC}} \right).$$
(15)

Replacing δ_L and φ_L by their values in the first approximation, taking into account that $1/k\zeta$ is small, expanding the terms in brackets in series, and retaining terms containing $1/k\zeta$ in the first degree, we obtain

$$u \,\delta/v_w = Dk \zeta \exp(Ck \zeta/u).$$

Here

$$\begin{split} \mathcal{C} &= 1,107 \, \sqrt{\frac{\bar{h}_{w}}{2\mathrm{Pr}_{\mathrm{r}}a_{2}}} \left\{ \arcsin \frac{1-h_{w}+l\bar{u}^{2}}{\varepsilon} - \arcsin \frac{1-h_{w}+l\bar{u}^{2}}{\varepsilon} \right\}; \\ l &= 2\mathrm{Pr}_{\mathrm{r}}I_{2}\left(1\right)-1; \quad f = l-4\mathrm{Pr}_{\mathrm{r}}a_{2}I_{1}\left(1\right)a_{1}; \\ \varepsilon^{2} &= (1-\bar{h}_{w}+l\bar{u}^{2})^{2}+8\,\mathrm{Pr}_{\mathrm{r}}a_{2}\,\overline{u}^{2}\,\bar{h}_{w}\,I_{1}^{2}\left(1\right)/a_{1}^{2}; \\ D &= \frac{k_{1}}{k^{2}}\exp\left\{-1.107k_{1}\left(1-\frac{\mathrm{Pr}_{\mathrm{r}}-\mathrm{Pr}_{\pi}}{\varepsilon^{2}a_{1}\,\mathrm{Pr}_{\mathrm{r}}}\times\right. \right. \\ &\times \left(1-\bar{h}_{w}+l\bar{u}^{2}\right)\left[1+\bar{h}_{w}+l\bar{u}^{2}-2\left\{\frac{\bar{h}_{w}}{2}\left(1-\frac{a_{1}}{I_{1}}\right)+\frac{1}{2}\left(1+\frac{a_{1}}{I_{1}}\right)-\right. \\ &\left.-\bar{u}^{2}\left[2\,\mathrm{Pr}_{\mathrm{r}}a_{2}\,\frac{I_{1}}{a_{1}}-\frac{1}{2}\left(\frac{a_{1}}{I_{1}}+1\right)l\right]\right\}\frac{\sqrt{\bar{h}_{w}}}{\sqrt{1-\bar{u}^{2}}}\right]\right)\right\}. \end{split}$$

In order to obtain the friction drag of the plate, we must find a second equation relating the friction and the boundary layer thickness.

We obtain this equation by using the integral relation expressing the momentum law.

Determination of the Ratio
$$\delta^{**}/\delta$$

By definition

$$\frac{\delta^{**}}{\delta} = \int_{0}^{1} \frac{\rho}{\rho_{0}} \varphi(1-\varphi) d\frac{y}{\delta} = \frac{\rho_{w}}{\rho_{0}} I.$$

Since $\delta_L/\delta \ll 1$, in determining δ^{**}/δ we shall take values of φ and ρ/ρ_W , for the turbulent regime. To calculate δ^{**}/δ , we integrate successively by parts and put the result in the form of a series in $1/k\zeta$:

$$I = \int_{0}^{1} \frac{\rho}{\rho_{w}} (\varphi - \varphi^{2}) d \frac{y}{\delta} = \frac{\sqrt{\bar{h}_{w}}}{1.107k\zeta} \frac{1}{\sqrt{1 - \bar{u}^{2}}} + \frac{F_{1}}{k\zeta^{2}} + \frac{F_{2}}{k\zeta^{3}} + \dots$$

Then, taking account of the expression for ρ_w/ρ_0 , we obtain

$$\frac{\delta^{**}}{\delta} = \sqrt{\frac{1-\overline{u}^2}{\overline{h}_w}} \frac{1}{1.107k\zeta} + \dots$$

Determination of the Friction Law

We use the integral relation expressing the momentum law

$$\frac{d}{dx}\,\rho_0\,u^2\,\delta^{**}+\rho_0\,u\,\frac{du}{dx}\,\delta^*=\tau_w\,.$$

For the plate u = const and $\rho_0 = \text{const}$, and therefore $\rho_w = \text{const}$ also; making the assumption that $T_w = \text{const}$, we may write this equation as

$$\frac{d}{dx}\left(\frac{u\,\delta}{v_{\omega}}I\right) = \frac{u}{v_{\omega}}\frac{\tau_{\omega}}{\rho_{\omega}u^2} = \frac{1}{\zeta^2}\frac{u}{v_{\omega}}.$$

Replacing I and u δ/ν_W by their values, evaluating the last integral approximately, and taking into account that $1/k\zeta$ is small, we obtain

$$\frac{ux}{v_{\omega}} = D\zeta^2 \exp \frac{C}{\overline{u}} k\zeta \sqrt{\frac{\overline{h_{\omega}}}{1 - \overline{u}^2}} \left(\frac{1}{1.107} + \frac{F_1}{k\zeta} + \frac{F_2}{k\zeta^2} + \dots \right).$$
(16)

The local friction coefficient is

$$c_{f} = \frac{2 \tau_{w}}{\rho_{0} u^{2}} = \frac{2}{\zeta^{2}} \frac{1 - \overline{u}^{2}}{\overline{h}_{w}}.$$

The friction coefficient for a plate of length l will be

$$C_{f} = \int_{0}^{l} \frac{c_{f}}{l} dx = \frac{2\delta_{x=l}^{**}}{l} = \frac{v_{w}}{u} \left(\frac{u\delta}{v_{w}}I\right)_{x=l} \frac{2}{l} \frac{1-\overline{u}^{2}}{\overline{h}_{w}}.$$

Substituting for $u\,\delta/\nu_{_{\rm W}}$ and I, we obtain

$$C_{j} = \frac{2}{1.107} \sqrt{\frac{1-\bar{u}^{2}}{\bar{h}_{\omega}}} \frac{\nu_{\omega}}{ul} D \exp \frac{C}{\bar{u}} k\zeta_{l}, \qquad (17)$$

where we determine ζ_1 from (16), putting x = l. For an incompressible fluid C_f is obtained for u = 0, $\bar{h}_w = 1$, $v_w = v_0$.

Interpolation Formula for C_f

The formulas obtained for c_f and C_f may be simplified within a certain range of variation of ζ . When ζ varies in the limits 8 to 20, as shown in [2], the function $\ln(\zeta^2 \exp \zeta)$ may be represented approximately as the straight line:

$$\ln\left(\zeta^2\exp\zeta\right) = n_1 + n_2\zeta,$$

where $n_1 = 2.9$; $n_2 = 1.16$ for the range of variation of ζ indicated. In this case

$$\left[\exp\frac{C}{\overline{u}}k\zeta\right]k^{2}\zeta^{2} = \frac{u^{2}}{C^{2}}\exp\left(n_{1}+n_{2}\overline{\zeta}\right), \quad \overline{\zeta} = Ck\zeta/\overline{u}.$$

Fig. 1. Dependence of Be^D on Pr_T for $h_W = 1$ and Pr_L = 1; 1-M = 2; 2-5; 3-10.

Formula (16) may be written in the form

$$\frac{ux}{P_{w}} = \frac{D\overline{u}^{2}}{k^{2}C^{2}} \exp\left(n_{1} + n_{2}\overline{\zeta}\right) \left(\sqrt{\frac{\overline{h}_{w}}{1 - \overline{u}^{2}}} \frac{1}{1.107} + \cdots\right).$$
(18)

Putting x = l and neglecting the terms $\frac{F_1}{k\zeta} + \frac{F_2}{(k\zeta)^2}$ in comparison with the first. we obtain $n_1 + n_2 \overline{\zeta_l} = \ln\left(\frac{k^2 C^2}{D\overline{u}^2} - \frac{ul}{v_w}\sqrt{\frac{1-\overline{u}^2}{\overline{h_w}}} 1.107\right).$ Substituting ζ_1 from this formula into (17), we obtain

$$C_{f} = (1.107)^{\frac{3-n_{2}}{n_{2}}} \left(\frac{ul}{\nu_{0}}\right)^{\frac{1-n_{2}}{n_{2}}} D^{\frac{n_{2}-1}{n_{2}}} \left(\frac{c}{\overline{u}}\right)^{\frac{2}{n_{2}}} (\overline{h_{w}})^{\frac{n_{2}-1}{2n_{2}}} (1-\overline{u})^{\frac{3-n_{2}}{2n_{2}}} \times \left(\frac{u_{w}}{\mu_{0}}\right)^{\frac{n_{2}-1}{n_{2}}} 2k^{\frac{2}{n_{2}}} \exp\left(-\frac{n_{1}}{n_{2}}\right) (2 \operatorname{Pr}_{\tau} a_{2})^{-\frac{1}{n_{2}}}.$$

Substituting the value of C and D and taking into account that $n_1 = 2.9$; $n_2 = 1.16$; k = 0.39; $k_1/k = 11$, we obtain

$$\begin{split} C_{f} &= 0.027 \ \mathrm{Re}^{-0.139} B(\overline{u}, \ \overline{h}_{w}) \exp D', \\ B &= (\overline{h}_{w})^{0.0695} (1 - \overline{u}^{2})^{0.79} \left(\frac{\mu_{w}}{\mu_{0}}\right)^{0.139} (2 \mathrm{Pr}_{\mathrm{T}} a_{2})^{-0.861} \times \\ &\times \left[\frac{1}{\overline{u}} \left(\arcsin \frac{\overline{h}_{w} - 1 - \overline{fu}^{2}}{\varepsilon} - \arcsin \frac{\overline{h}_{w} - 1 - \overline{lu}^{2}}{\varepsilon} \right) \right]^{1.722}, \\ D' &= 0.139 \cdot 1.107 k_{1} \frac{\mathrm{Pr}_{\mathrm{T}} - \mathrm{Pr}_{\pi}}{\varepsilon^{2} \ \mathrm{Pr}_{\mathrm{T}} a_{1}} (1 - \overline{h}_{w} + \overline{lu}^{2}) \left[1 + \overline{h}_{w} + \overline{lu}^{2} - 2 \left(\frac{\overline{h}_{w}}{2} \left(1 - \frac{a_{1}}{I_{1}} \right) + \frac{1}{2} \left(1 + \frac{a_{1}}{I_{1}} \right) - \overline{u}^{2} \left(2 \mathrm{Pr}_{\mathrm{T}} a_{2} \frac{\overline{I}_{1}}{a_{1}} - \frac{1}{2} \left(\frac{a_{1}}{I_{1}} + 1 \right) l \right) \right) \sqrt{\frac{\overline{h}_{w}}{1 - \overline{u}^{2}}} \right]. \end{split}$$

110

The factor $B(u, h_w) \exp D'$ characterizes the influence of the variable heat content and compressibility on the friction drag of the plate. The factor $\exp D'$ characterizes the influence of \Pr_L on the value of C_f . When $\Pr_T = 1$, we obtain the formula given in [2] for C_f .

To evaluate the influence of Pr_T on the friction drag, we give the dependence of $Be^{D'}$ on Pr_T for $\overline{h}_W = 1$ and for various M (Fig. 1). It may be seen from the graph that the influence of Pr_T on C_f is insignificant. The influence of Pr_T on q_W is more substantial, as may be seen from the expression for S(1) and R(1).

Influence of PrT on Heat Transfer

Using the expression for h(φ), derived at the beginning of this article, we obtain that

$$q_{w} = \frac{\lambda_{w}}{C_{p_{w}}} \frac{\partial h}{\partial y} \Big|_{y=0} = \frac{\lambda_{w}}{C_{p_{w}}} \left(\frac{\partial h}{\partial \varphi}\right)_{w} \frac{1}{u} \frac{\partial v_{x}}{\partial y} \Big|_{y=0}.$$

Substituting the value of $\left(\frac{\partial h}{\partial \varphi}\right)_{w}$ from (4), and taking into consideration that $\frac{\partial v_{x}}{\partial y} \Big|_{y=0} = \frac{\tau_{w}}{\mu_{w}}$, we have
 $q_{w} = \frac{1}{\Pr(0)} \frac{\tau_{w}}{u} \frac{h_{r} - h_{w}}{S(1)},$
where

$$h_r = h_0 + R(1) u^2/2.$$

For the dimensionless heat transfer coefficient we obtain the expression

St =
$$\frac{q_w}{(h_r - h_w)\rho_0 u} = \frac{c_f}{2\Pr(0)} \frac{1}{S(1)}$$

Figure 2 shows the dependence of 1/S(1) as a function of Pr_L and Pr_T for two values of φ_L . It follows from the graphs in this figure that Pr_T has an appreciable influence on the value of the St number.

NOT ATION

 v_x , v_y -velocity components along the coordinate axes; p, ρ , μ , λ -pressure, viscosity and thermal conductivity respectively; h-enthalpy of unit mass of gas; $H = h + v_x^2/2$ -total heat content of unit mass of gas; τ and q_y -components of friction stress tensor and heat flux vector; R-gas constant; M-molecular weight; Pr-Prandtl number; u, ρ_0 , h_0 , $H_0 = h + u^2/2$ -values characterizing the external flow; ρ_W -density at wall; δ_L -thickness of laminar sublayer; φ_L -velocity at edge of laminar sublayer.

REFERENCES

1. I. L. Ginzburg, IFZh, no. 8, 1964.

2. I. L. Ginzburg, Vestnik LGU, no. 1, 1961.

22 September 1964

Zhdanov State University, Leningrad