
UDC 532. 517.4 

I N F L U E N C E  OF T U R B U L E N T  Pr NUMBER ON F R I C T I O N  AND l tEAT T R A N S F E R  
AT A P L A T E  I M M E R S E D  IN A T U R B U L E N T  GAS S T R E A M  

I. P. Ginzburg and I. V. Korneva 

Inzhenerno-Fizicheskii Zhurnal, Vol. 9, No. 2. pp. 155-162, 1965 

A solution is offered to the problem of determining the friction and heat transfer coefficients for a plate im- 
mersed in a turbulent gas stream, using the approximate dependence of heat content on velocity given in 
reference [1]. The influence of Pr T on friction and heat transfer is evaluated. 

The following relation, between heat content and velocity was established in reference [1] for the case of zero- 
gradient flow with arbitrary Pr L and PrT: 
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The present paper makes use of this relation and the principles of the semi-empirical  theory of turbulence to eval- 
uate the influence of the Pr. T number on friction and heat transfer at a plate. 

Approximate Form of R(~o) and S(r for a Two-La),er System 

We shall conventionally divide the complete boundary layer into two zones: a laminar sublayer and a turbuient 
layer, The dimensionless velocity in these layers will vary, respectively, from 0 to ~o L in the laminar sublayer and from 
~L to l in the turbulent layer. The Pr number will take a value equal to Pr L in the laminar sublayer and a value equal 

to Pr T in the turbulent layer. We then have 
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We represent w (~0) approximately in the form of a third-degree polynomial: 

r  - 3 

Assuming that Pr T and Pr L are constants, we calculate S(~0L) and R(~OL). Making a numerical approximation to the re- 
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suits obtained, we have 

s (~0 - % ,  e (%) ~ PrL ~ "  

The integrals S(~) and R(r with account for the form of S(~0L) and R(~OL), become 
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Pr c Prc 

R (q~) = q)~ (Pr L - -  PrO -5- 2Pr~12, (2) 
where 
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Calculation of 11 and 12 for Pr T varying from 0.5 to 2 shows that 11 and 12 may be put in the approximate form 

It = a~ % I2 ,= a2 q~, (3) 

where 

a I = 1 . 2 1 4 - - 0 . 2 1 4 P r , ,  ae = 0 . 6 5 - - 0 . 1 5 P r , .  

As regards I 1 (1) and I i (1), 11 (1) may be accurately expressed in terms of gamma functions, and I l (1) approximately, 
follows: 
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Determining (Oh/Or w from the boundary conditions h = h0 when r = O, we obtain 

where 
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Substituting (2) into (1) and taking (3) into account, we can approximate to the dependence of h on ~0 in the turbulent 
layer by means of a second-degree polynomial in r 

where 

In the laminar sublayer 
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.Deriyation of the Velocity profile 

We shall determine the velocity distribution law over the boundary layer, 

In accordance with the basic assumptions of the semi-empir ical  theory of turbulence, the friction stress is given by: 

Y "<-~ ~L, ~ ~--- bt uam/oy. 

In accordance with the preceding paragraph, we make the assumption 

x/~  = 1 - -  r~ ~ .  

We shall further suppose that 

p/p~, = hw/h = h~/h, 

Using the expressions derived, after substituting ~ from (5), for determining the dependence ~a(y) we obtain 
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Integrating (8) approximately, and taking into account that A < 0, on condition that r = 1 when y = 8, we obtain 
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In the laminar sublayer, assuming that bt = ~w (h/h~) ~, 
mining ~o (y) we obtain the equation 

whose solution may be written approximately as: 
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after substituting the value of h from (6) into (7), for deter- 
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Determination of the Thickness of the Laminar Sublayer and the Flow Velocity at its Edge 

The velocity derivative has a discontinuity at the edge of the laminar sublayer 
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Substituting into (11), we obtain 
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Substituting I~L/V'gL into (I2), we obtain 

kx ~ 1 + n- l -  q~L+ n +  r (13) 

To determine ~L' we put y = 8L' ~ = ~L in (10), and obtain 

( q)L l + n  B' n A' 
-2 7-2 h-% = 
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This equation may be solved by the method of successive approximations. We take as the first approximation 

where 

q~ -- k U k ~ ~L k tl 
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Deviation of the Relation Between g and 6 

Putting y = 5 L, ~o = ~o L in (9), we obtain the following equation relating g and 6: 

In ~L = 1.107 ( --2A(PL--B--arcsin - - 2 A - - B )  
a V ~  k ( l f ~  arcsin ]/ B~ 4AC I/-~----4AC/ " (15) 

Replacing 6 L and ~0 L by their values in the first approximation, taking into account that 1/kg is small, expanding the 
terms in brackets in series, and retaining terms containing 1/kg in the first degree, we obtain 

Here 
u 8/v~ = Dk ~ exp (Ck ~./u). 
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In order to obtain the friction drag of the plate, we must find a second equation relating the friction and the boundary 

layer thickness. 

We obtain this equation by using the integral relation expressing the momentum law. 

Determination of  the Ratio 6 **/5 

By definition 

- A_~(1_~)d = P~f. 

o 
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Since 6L/8 << 1, in determining 8"* /8 we shall take values of ~o and P/Pw, for the turbulent regime, To calcu-  
late 8**/8, we integrate successively by parts and put the result in the form of a series in 1/kg:  

I = 2  -P (W--oP 2) d ~ = =  1 
p~ 8 1.107kr V 1  u = 
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F1 F~ + 
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Then, taking account of the expression for pw/P0, we obtain 
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Determination of the Friction Law 

1.107k~ 
- -  + . . . .  

We use the integral relation expressing the momentum law 

d du 
- -  9oU2 ~** q- 9oU ~* = %. 
dx dx 

For the plate u = const and P0 = const, and therefore Pw = const also; making the assumption that T = const, we may 
write this equation as w 

dx vw Pw us "~2 vw 

Replacing I and u 8/u w by their values, evaluating the last integral approximately, and taking into account that 1/k 
is small, we obtain 

ux 2 C 1 / /  g= =D~. exp _-=-k( 
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The local friction coefficient is 

c~= 2 ~ =  2 i--u 
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The friction coefficient for a plate of length l will be 
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Substituting for uS /v  w and I, we obtain 
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Fig. 1. 
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Dependence of Be D on Pr T for h w = i and 

Pr L = 1; 1--M =2;  2--5; 3 - 1 0 .  

where we determine ~1 from (16), putting x = l, For an incompressible fluid Cf i s  obtained for U =  0, hw = 1, ,% = %. 

Interpolation Formula for Cf  

The formulas obtained for c f  and Cf  may be simplified within a certain range of variation of ~. When g varies 

in the limits 8 to 20, as shown in [2], the function l n (g  2 exp g) may be represented approximately as the straight line: 

In (~ exp 4) = n 1 + n2 4, 

where n 1 = 2.9; n 2 = 1.16 for the range of variation of g indicated. In this case 

C ] k 2 ~2 = u2 
exp..-=u k~ c-Texp(nl +n~~), C=Ck~[u. 
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Formula (16) may be written in the form 

ux. = __Du exp(n t  -k n2 ~) hw_, 1 q_ . . .  ". 
v~ k 2 C 2 ] - -  u 1.107 

F~ F2 in comparison with the first, we obtain Putting x = l and neglecting the terms k ~ q- (k ~)~' - - -  _-27 
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Substituting gl from this formula into (17), we obtain 

l--n2 2 
3--n2 n2 r t2~l  n'-2- n ~ - - I .  3--n~ 

n2~-I 
2 1 ( / n -  

)< ~___e_~ 2k n' exp -- nl (2Pr ,  a2) 
\ ~ o /  

( 1 8 )  

.X 

Substituting the value of C and D and taking into account that n t = 2. 9; n z = 1.16; k = 0. 39; k l /k  = 11, we obtain 
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Fig. 2. Dependence of l /S(1)  on Pr T and Pr L for ~L = 

=0(1-PrL =1,5;  2 - 1 . 0 ;  9 - 0 . 8 ;  4 - 0 . 5 )  and for 

~T = 0 , 5 ( 5 - P r L  =0.5;  6 -1 ;  7 - 1 . 5 ) .  
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The factor B (u, hw) exp D' character izes  the influence of the var iable  heat  content and compressibi l i ty  on the friction 
drag of the plate,  The factor exp D' character izes  the influence of  Pr b on the value of Cf. When Pr T = I, we obtain the 
formula given in [2] for e l .  

To evaluate  the influence of  Pr T on the friction drag, we give the dependence of Be D' on Pr T f o r h  w = 1 and for 
various M (Fig. 1). It may be seen from the graph that the influence of Pr T on Cf  is insignificant.  The influence of Pr T 
on qw is more substantial,  as may be seen from the expression for S(1) and R(1). 

Influence of Pr T on Heat Transfer 

Using the expression for h (qg, derived at the beginning of this ar t icle ,  we obtain that 

S u b s t i t u t i n g t h e v a l u e o f  ( c]~-h / f rom(4) ,  a n d t a k i n g i n t o c o n s i d e r a t i o n t h a t  
\ o q ~ /  

1 "% h~--h~  
q W  - -  - -  

Pr(O) u S ( 1 )  
where 

hr = ho + R (1) uZ12. 

1 Ovx t 
u 0y l~=0" 

---- , we have 
0y P u=o I~ 

For the dimensionless heat  transfer coeff ic ient  we obtain the expression 

St---- 
q~ _ cf 1 

(hr--h~)poU 2Pr (0) S(1) 

Figure 2 shows the dependence of 1/S (1) as a function of Pr L and Pr T for two values of  ~0 L. It follows from the graphs in 

this figure that Pr T has an appreciable  influence on the value of the St number. 

N OT ATI ON 

Vx, v. - -ve loc i ty  components along the coordinate axes; p, p, fL, X-pressure,  viscosity and thermal  conduct ivi ty re- 
spectively;  ~ - e n t h a l p y  of unit mass of gas; H = h + V2x/2-total heat  content of unit mass of gas; r and qy -c omponen t s  

of friction stress tensor and heat  flux vector; R-gas  constant; M - m o l e c u l a r  weight; P r -P rand t l  number; u, P0, h0, H0 = 
= h + u2 /2 -va lues  character iz ing the external  flow; Pw -de ns i t y  at wall; 6L--thickness of laminar  sublayer; e L - V e l o c i t y  

at edge of laminar  sublayer. 
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